

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH MATHEMATICS & DECISION SCIENCES Volume 12 Issue 1 Version 1.0 January 2012 Type : Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Inc. (USA) Online ISSN: 2249-4626 & Print ISSN: 0975-5896

Two-Commodity Inventory System for Base-Stock Policy with Service Facility

By Gomathi, D., Jeganathan. K., Anbazhagan, N

Alagappa University, Karaikudi, Tamilnadu, India

Abstract - This article considers a two-commodity continuous review inventory system at a service facility, wherein an item demanded by a customer is issued after performing service on the item. The service facility is assumed to have a finite waiting hall. The arrival time points of customers form a Poisson process. A customer with probability p and a negative customer with probability q = (1 - p), ($0 \le p \le 1$). An ordinary customer, on arrival, joins the queue and the negative customer does not join the queue and takes away one waiting customer if any. The life time of each item and service time are assumed to have independent exponential distribution. The joint probability distribution of the number of customers in the system and the inventory level is obtained in the steady state. Various system performance measures in the steady state are derived. The results are illustrated numerically.

Keywords : Inventory system; base stock policy; service facility; negative customer; two-commodity .

GJSFR-C Classification: FOR Code: 150205

Strictly as per the compliance and regulations of :

© 2012 . Gomathi, D., Jeganathan. K., Anbazhagan, N.This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Two-Commodity Inventory System for Base-Stock Policy with Service Facility

Gomathi, D^{α}., Jeganathan. K^{Ω}., Anbazhagan, N^{β}

Abstract - This article considers a two-commodity continuous review inventory system at a service facility, wherein an item demanded by a customer is issued after performing service on the item. The service facility is assumed to have a finite waiting hall. The arrival time points of customers form a Poisson process. A customer with probability p and a negative customer with probability $q = (1-p), (0 \le p \le 1)$. An ordinary customer, on arrival, joins the queue and the negative customer does not join the queue and takes away one waiting customer if any. The life time of each item and service time are assumed to have independent exponential distribution. The joint probability distribution of the number of customers in the system and the inventory level is obtained in the steady state. Various system performance measures in the steady state are derived. The results are illustrated numerically.

Keywords : Inventory system; base stock policy; service facility; negative customer; two-commodity.

I. INTRODUCTION

he (S-1,S) or one-to-one policies are usually implemented for inventory systems stockina expensive, slow moving items. Analysis of continuous review perishable inventory systems with positive lead times under (S-1,S) policy have been carried out by Schmidt and Nahmias (1985), Pal (1989) and Kalpakam and Sapna (1995) and (1996). In all these models, whenever the inventory level drops by one unit, either due to a demand or a failure, an order for one item is placed. Kalpakam and Arivarignan (1998) dealt with a (S-1, S) system with renewal demands for non-perishable items. Kalpakam and Shanthi (2000) have considered modified base stock policy and random supply quantity. Sren Gled Johansen (2005) has considered base-stock policies for the lost sales inventory system with Poisson demand and Erlangian lead times.

Krishnamoorthy et al. (1994) considered a twocommodity continuous review inventory system without lead time. In their model, each demand is for one unit of first commodity or one unit of second commodity or one unit of each commodity with prefixed probabilities. Krishnamoorthy and Varghese (1994) considered a twocommodity inventory problem without leadtime and with Markov shift in demand for the type of commodity namely "commodity-1", "commodity-2" or "both commodity". Yadavalli et al. (2006) have considered a two commodity inventory system with Poisson demands. It is further assumed that the demand for the first commodity require the one unit of second commodity in addition to the first commodity with probability p_1 . Similarly, the demand for the second commodity require the one unit of first commodity in addition to the second commodity require the one unit of first commodity in addition to the second commodity with probability p_2 . Yadavalli et al. (2004) have considered a two commodity inventory system with individual and joint ordering policies.

In most of the inventory models considered in the literature, the demanded items are directly issued from the stock, if available. The demands that occur during stock-out period are either not satisfied (lost sales case) or satisfied only on receipt of the ordered items (backlog case). In the later case, it is assumed that either all (full backlogging) or any prefixed number of demands (partial backlogging) that occurred during stock-out period are satisfied. For review of these works see Nahmias (1982), Raafat (1981), Kalpakam and Arivarignan (1990), Elango and Arivarignan (2003) and Liu and Yang (1999).

But in the case of inventories maintained at service facilities, the demanded items are issued to the customers only after some service is performed on it. In this situation the items are issued not at the time of demand but after a random time of service from the epoch of demand. This forces the formation of queues in these models, which in turn necessitates the study of both inventory level and queue length joint distribution. Berman, Kaplan and Shimshank (1993) have considered an inventory management system at a service facility which uses one item of inventory for each service provided. They assumed that both demand and service times are deterministic and constant, as such queues can from only during stock out periods. They determined optimal order quantity that minimizes the total cost rate.

Berman and Kim (1999) analyzed a problem in stochastic environment where customers arrive at service facilities according to a Poisson process and the service times are exponentially distributed with mean inter-arrival time (assumed to be greater than the mean service time) and each service requires one item from 2012

Author^{α_Ωβ} : Department of Mathematics, Alagappa University, Karaikudi, Tamilnadu, India.

E-mail : $goms_1783@yahoo.co.in^{\alpha}$, n.anbazhagan.alu@gmail.com^{β} jegan.nathan85@yahoo.com^{Ω}

inventory. The main result of their work is that under both the discounted cost case and the average cost case, the optimal policy of both the finite and infinite time horizon problem is a threshold ordering policy. The optimal policy in Berman and Kim (1999) is derived given that the order quantity is known. A logically related model was studied by He, Jewkes and Buzacott [9], who analyzed a Markovian inventory-production system, where customer demands arrive at a workshop and are processed by a single machine in batch sizes of one. Berman and Sapna (2000) studied extensively an inventory control problem at a service facility that uses one item of inventory distributed service times and zero lead times. They analyzed the system with the restriction that the waiting space is finite. Under a specified cost structure, they derived the optimal ordering quantity that minimizes the long-run expected cost rate.

Elango (2001) has considered a Markovian inventory system with instantaneous supply of orders at a service facility. The service time is assumed to have exponential distribution with parameter depending on the number of waiting customers. Arivarignan et al. (2002) have extended this model to include exponential inventory system in which the size of the space for the waiting customers is infinite. Arivarignan and Sivakumar (2003) have considered an inventory system with arbitrarily distributed demand, exponential service time and exponential lead time. Finally, Sivakumar et al. (2005) considered a two-commodity perishable inventory system under continuous review at a service facility with a finite waiting room.

In this paper we have considered a (S-1,S)policy for two-commodity stochastic inventory system under continuous review at a service facility with a finite waiting room for customers. The customers arriving to the service station are classified as ordinary (positive or regular) and negative customers. The arrival of ordinary customers to the service station increase the queue length by one and the arrival of negative customer to the service station causes one ordinary customer to be removed if anyone is present.

In the real life situation, the sale agencies deal with two different items with high cost like email server and data server, refrigerator and washing machine etc.,. Keeping them in stock for sales purpose is high risk but yield high profit, wherein the waiting customers may be wooed or taken away by new arriving customers from a large population, many companies look for the prospective customers at others' sales centres. This motivates the researcher to consider the negative customer at a service facility for two commodities with (S-1,S) policy.

The remainder of this paper is organized as follows. In Section 2, we present the mathematical model and the notations. Analysis of the model and the steady state solution are given in Section 3. In Section 4, we derive various measures of system performance

© 2012 Global Journals Inc. (US)

in steady state. The total expected cost rate is calculated in Section 5. Our numerical study is presented in Section 6. Section 7 has concluding remarks.

PROBLEM FORMULATION II.

Consider a two commodity stochastic inventory system with service facility in which the items are delivered to the demanding customers. The demand is for single item per customer. The maximum capacity of the *i*-th commodity is S_i (*i* = 1,2) units and the waiting hall space is M.

The following assumptions are made:

• The arrival times of customers form a Poisson process with parameter λ . The probability that an ordinary customer is p and a negative is q(=1-p).

• The removal rule adopted in this paper is RCE (Removal of a customer at the end), i.e., arrival of a negative customer removes only a customer at the end including the one who is receiving the service at the time of arrival of a negative customer. The arrival of a negative customer has no effect to the empty service station.

· The demands occur either one unit of first commodity or one unit of second commodity or one unit of each commodity and the service time for each demand follows a negative exponential distribution with parameters γ_1 , γ_2 and γ_{12} respectively.

• A one-to-one ordering policy is adopted. According to this policy, orders are placed for one unit of i-th commodity, as and when the inventory level of i-th commodity drops due to a demand (i = 1, 2).

• The lead times of the reorders for the *i*-th commodity are assumed to be distributed as a negative exponential with parameter μ_i , i = 1,2.

• The demands that occur during stock-out periods are lost.

A. Notations

 $[A]_{ii}$: The element/submatix at (i, j) th position of A.

0 : Zero matrix.

(1

1

- : An identity matrix. 1
- : A column vector of 1s appropriate dimension. e

$$\delta_{ij} = \begin{cases} 1, & if \ i = j \\ 0, & otherwise. \end{cases}$$
$$\overline{\delta}_{ij} = (1 - \delta_{ij})$$
$$E_1 = \{0, 1, \dots, S_1\}$$
$$E_2 = \{0, 1, \dots, S_2\}$$
$$E_3 = \{0, 1, \dots, M\}$$

of

Global Journal

$$\begin{split} E &= E_{1} \times E_{2} \times E_{3} \\ & [G_{1}]_{mn} = \begin{cases} \gamma_{1} + \delta_{k0}\gamma_{12}, & n = m - 1, & m = 1, 2, \dots, M \\ 0, & otherwise. \end{cases} \\ & [G_{2}]_{mn} = \begin{cases} \gamma_{2} + \delta_{i0}\gamma_{12}, & n = m - 1, & m = 1, 2, \dots, M \\ 0, & otherwise. \end{cases} \\ & [G_{12}]_{mn} = \begin{cases} \gamma_{12}, & n = m, & m = 1, 2, \dots, M \\ 0, & otherwise. \end{cases} \\ & [G_{12}]_{mn} = \begin{cases} \gamma_{12}, & n = m, & m = 1, 2, \dots, M \\ 0, & otherwise. \end{cases} \\ & [-(p\lambda + (S_{1} - i)\mu_{1} + (S_{2} - k)\mu_{2}), & n = m, & m = 0 \\ -(\lambda + \overline{\delta}_{0i}\gamma_{1} + \overline{\delta}_{0k}\gamma_{2} + (1 - \delta_{0i}\delta_{0k})\gamma_{12} + (S_{1} - i)\mu_{1} + (S_{2} - k)\mu_{2}), & n = m, & m = 1, 2, \dots, M - 1 \\ -(q\lambda + \overline{\delta}_{0i}\gamma_{1} + \overline{\delta}_{0k}\gamma_{2} + (1 - \delta_{0i}\delta_{0k})\gamma_{12} + (S_{1} - i)\mu_{1} + (S_{2} - k)\mu_{2}), & n = m, & m = M \\ 0, & otherwise. \end{cases} \end{split}$$

where $i = 0, 1, ..., S_1$ and $k = 0, 1, ..., S_2$

$$[M_{S_{1}-i}]_{mn} = \begin{cases} (S_{1}-i)\mu_{1}, & n=m, \\ 0, & otherwise. \end{cases} m = 0, 1, \dots, M$$

$$[U_{S_2^{-k}}]_{mn} = \begin{cases} (S_2 - k)\mu_2, & n = m, \\ 0, & otherwise. \end{cases} m = 0, 1, \dots, M$$

III. ANALYSIS

Let $L_i(t)$ denote the inventory level of *i*-th commodity and X(t) denote the number of customers (waiting and being served) in the system, at time *t*. From the assumptions made on the input and output processes, it may be shown that the triplet

$(L_1, L_2, X) = \{ (L_1(t), L_2(t), X(t),), t \ge 0 \},\$

on the state space E, is a Markov process. The infinitesimal generator of this process,

 $A = (a((i,k,m),(j,l,n))), \ (i,k,m),(j,l,n) \in E$

can be obtained by using the following arguments:

• The arrival of an ordinary customer makes a transition from (i,k,m) to $(i,k,m+1), i = 0,1,\ldots,S_1$, $k = 0,1,\ldots,S_2$, $m = 0,1,\ldots,M-1$ with intensity of transition $p\lambda$, and the arrival of a negative customer

makes a transition from (i,k,m) to (i,k,m-1), $i = 0,1,...,S_1$, $k = 0,1,...,S_2$, m = 1,2,...,M with intensity of transition $q\lambda$, q = 1 - p. The arrival of a negative customer has no effect on empty service station.

• The service completion involving the first commodity forces one customer to leave the system and a decrease of one item in the inventory level of the first commodity. Thus a transition takes place from (i,k,m) to (i-1,k,m-1), $i=1,2,\ldots,S_1$, $k=0,1,\ldots,S_2$, $m=1,2,\ldots,M$ with intensity γ_1 .

• Similarly, a service completion involving the second commodity forces one customer to leave the system and a decrease of one item in the inventory level of the second commodity. Thus a transition takes place from state (i, k, m) to (i, k-1, m-1), $i = 0, 1, \ldots, S_1$, $k = 1, 2, \ldots, S_2$, $m = 1, 2, \ldots, M$ with intensity γ_2 .

• A transition from state (i, k, m) to (i-1, k-1, m-1) takes place when a service completion involving both commodity forces one customer to leave the system and a decrease of one item in the inventory level of first and second commodities. The intensity of the transition is γ_{12} , $i = 1, 2, ..., S_1$, $k = 1, 2, ..., S_2$, m = 1, 2, ..., M.

• A transition from state (i, k, m) to (i+1, k, m)for $i = 0, 1, ..., S_1 - 1$, $k = 0, 1, ..., S_2$, m = 0, 1, ..., Mtakes place when a replenishment occurs for the first commodity with intensity μ_1 . Similarly, a transition from state (i, k, m) to (i, k+1, m) for $i = 0, 1, ..., S_1$, $k = 0, 1, ..., S_2 - 1$, m = 0, 1, ..., M takes place when a replenishment occurs for the second commodity with intensity μ_2 .

• For other transition from (i,k,m) to (j,l,n) except $(i,k,m) \neq (j,l,n)$, the rate is zero.

• Finally, note that

$$\begin{split} a((i,k,m),(i,k,m)) &= -\sum_{\substack{j \ l \ n \\ (j,l,n) \neq (i,k,m)}} a((i,k,m),(j,l,n)). \end{split}$$
 Hence we have, a((i,k,m),(j,l,n)) is given by

 $m = 0, 1, \dots, M - 1$ More explicitly,

 $\int p\lambda$,

	1	· · · [′]	1 0 1 0
			$k = 0, 1, \dots, S_2$
		j=i,	$i = 0, 1, \dots, S_1$
	$q\lambda$,	n=m-1,	$m = 1, 2, \ldots, M$
		l=k,	$k = 0, 1, \dots, S_2$
		j=i,	$i = 0, 1, \dots, S_1$
	$-(p\lambda+(S_1-i)\mu_1+$	n=m,	m = 0
	$(S_2 - k)\mu_2),$	l=k,	$k = 0, 1, \dots, S_2$
		j = i,	$i = 0, 1, \dots, S_1$
		•	· · · · ·
4	$-(\lambda+\overline{\delta}_{0i}\gamma_1+\overline{\delta}_{0k}\gamma_2+$	n=m,	$m = 1, 2, \ldots, M - 1$
	$(1-\delta_{0i}\delta_{0k})\gamma_{12}+$		
	$(S_1 - i)\mu_1 + (S_2 - k)\mu_2)$		-
	(1)	// . /	, , , , I
	$-(q\lambda+\overline{\delta}_{0i}\gamma_1+\overline{\delta}_{0k}\gamma_2+$	n=m,	m = M
	$(1 - \delta_{0i} \delta_{0k}) \gamma_{12} +$		
	$(S_1 - i)\mu_1 + (S_2 - k)\mu_2)$		
	$(S_1) \mu_1 (S_2) \mu_2)$,, j <i>– i</i> ,	<i>v</i> = 0,1,, <i>v</i> ₁
	$\gamma_1 + \delta_{k0} \gamma_{12},$	n - m - 1	m = 1, 2,, M
	$71 + 6_{k0} + 12$		$k = 0, 1, \dots, S_{2}$
			· · · · 2
		j=i-1,	$i = 1, 2, \dots, S_1$
	l		
	(
	$\gamma_2 + \delta_{i0}\gamma_{12}, n = m$	-1, m =	$1, 2, \dots, M$
	l = k - l	-1, k =	$1, 2, \dots, S_2$
	i = i	<i>i</i> = ().1S.
	J^{-i}	• - (······································

n = m + 1, 1.

$$\gamma_{12},$$
 $n = m - 1, m = 1, 2, ..., M$
 $l = k - 1, k = 1, 2, ..., S_2$
 $j = i - 1, i = 1, 2, ..., S_1$

$$(S_1 - i)\mu_1, \quad n = m, \qquad m = 0, 1, \dots, M$$

 $l = k, \qquad k = 0, 1, \dots, S_2$
 $j = i + 1, \qquad i = 0, 1, \dots, S_1 - 1$

$$(S_2 - i)\mu_2, \quad n = m, \qquad m = 0, 1, \dots, M$$

 $l = k + 1, \qquad k = 0, 1, \dots, S_2 - 1$
 $j = i, \qquad i = 0, 1, \dots, S_1$

$$A = \begin{cases} S_{1} \\ S_{1} - 1 \\ S_{1} - 2 \\ \vdots \\ 1 \\ 0 \end{cases} \begin{pmatrix} A_{s_{1}} & B \\ C_{1} & A_{s_{1}-1} & B \\ C_{2} & A_{s_{1}-2} & B \\ \vdots \\ \vdots \\ C_{s_{1}-1} & A_{1} & B \\ C_{s_{1}} & A_{1} & B \\ \vdots \\ C_{s_{1}} & A_{s_{1}} \end{pmatrix}$$

Where

$$[B]_{kl} = \begin{cases} G_1, & l = k, & k = 0, 1, \dots, S_2 \\ G_{12}, & l = k - 1, & k = 1, 2, \dots, S_2 \\ \mathbf{0}, & otherwise \end{cases}$$

$$[C_{S_{1}-i}]_{kl} = \begin{cases} M_{S_{1}-i}, & l = k, & k = 0, 1, \dots, S_{2} \\ 0, & otherwise \end{cases}$$

for
$$i = 0, 1, ..., S_1$$

$$\begin{bmatrix} G_2, & l = k - 1, & k = 1, 2, ..., S_2 \\ U_{S_2 - k}, & l = k + 1, & k = 0, 1, ..., S_2 - 1 \\ P_{ik}, & l = k, & k = 0, 1, ..., S_2 \\ 0, & otherwise \end{bmatrix}$$

A Steady State Analysis

It can be seen from the structure of A that the homogeneous Markov process $\{(L_1(t), L_2(t), X(t)) t \ge 0\}$ on the finite state space E is irreducible, aperiodic and persistent non-null. Hence the limiting distribution of the Markov process exists.

partitioned Let Π, as $\Pi = (\Pi^{(S_1)}, \Pi^{(S_1^{-1})}, \dots, \Pi^{(1)}, \Pi^{(0)}),$ denote the steady state probability vector of A . That is, Π satisfies

otherwise.

0,

$$\Pi A = 0 \quad and \quad \Pi e = 1 \tag{1}$$

The components of the vector $\Pi^{(q)}$ $(0 \le q \le S_1)$ are $\Pi^{(q)} = (\pi^{(q,S_2)}, ..., \pi^{(q,1)}, \pi^{(q,0)})$, where for $0 \le l \le S_2$, $\pi^{(q,l)} = (\pi^{(q,l,0)}, \pi^{(q,l,1)}, ..., \pi^{(q,l,M)})$.

From the structure of A, it is seen that the Markov process under study falls into the class of birth and death process in a Markovian environment as discussed by Gaver et al. (1984). Hence using the same argument, we can calculate the limiting probability vectors. For the sake of completeness, we provide the algorithm here.

Algorithm :

1. Determine recursively the matrices

$$F_0 = A_0$$

$$F_i = A_i + B(-F_{i-1}^{-1})C_{S_1 - i + 1}, \quad i = 1, 2, \dots S_1$$

2. Compute recursively the vectors $\Pi^{(i)}$

using

$$\Pi^{(i)} = \Pi^{(i+1)} B(-F_i^{-1}), \quad i = 0, 1, \dots, S_1 - 1$$

3. Solve the system of equations

$$\Pi^{(S_1)} F_{S_1} = 0$$
$$\sum_{i=0}^{S_1} \Pi^{(i)} e = 1.$$

From the system of equations $\Pi^{(S_1)}F_{S_1}=0$,

vector $\Pi^{(S_1)}$ could be determined uniquely, upto a multiplicative constant. This constant is decided by

 $\Pi^{(i)} = \Pi^{(i+1)} B(-F_i^{-1}), i = 0, 1, \dots, S_1 - 1$ and $\sum_{i=0}^{S_1} \Pi^{(i)} e = 1.$

IV. SYSTEM PERFORMANCE MEASURES

In this section, some performance measures of the system are derived under consideration.

a) Mean Inventory Levels

Let η_1 and η_2 be the average inventory level for the first commodity and the second commodity respectively in the steady state. Then we have,

$$\eta_1 = \sum_{i=1}^{S_1} i \left(\sum_{k=0}^{S_2} \sum_{m=0}^{M} \pi^{(i,k,m)} \right)$$

and

$$\eta_{2} = \sum_{k=1}^{S_{2}} k \left(\sum_{i=0}^{S_{1}} \sum_{m=0}^{M} \pi^{(i,k,m)} \right)$$

b) Mean Reorder Rates

Let η_3 and η_4 denote the mean reorder rate for the first and second commodities respectively. Then we have,

$$\eta_3 = (\gamma_1 + \gamma_{12}) \sum_{i=1}^{S_1} \sum_{k=0}^{S_2} \sum_{m=1}^{M} \pi^{(i,k,m)}$$

and

$$\eta_4 = (\gamma_2 + \gamma_{12}) \sum_{i=0}^{S_1} \sum_{k=1}^{S_2} \sum_{m=1}^{M} \pi^{(i,k,m)}$$

c) Mean Rate of Arrivals of Negative Customers

Let $\eta_{\scriptscriptstyle NC}$ denote the mean rate of arrivals of negative customers for the system. Then we have,

$$\eta_{NC} = \sum_{i=0}^{S_1} \sum_{k=0}^{S_2} q \lambda \left(\sum_{m=1}^M \pi^{(i,k,m)} \right)$$

d) Mean Balking Rate

Let $\eta_{\scriptscriptstyle B}$ denote the mean balking rate. Then we have,

$$\eta_B = p\lambda \sum_{i=0}^{S_1} \sum_{k=0}^{S_2} \pi^{(i,k,M)}$$

e) Mean Waiting time

Let \boldsymbol{W} denote the mean waiting time of the customers. Then, by Little's formula

$$\overline{W} = \frac{\Gamma}{\lambda_a}$$

where, $\Gamma = \sum_{m=1}^{M} m \left(\sum_{i=0}^{S_1} \sum_{k=0}^{S_2} \pi^{(i,k,m)} \right).$

where λ_a denotes the expected arrival rate which is given by

$$\lambda_{a} = p\lambda \sum_{i=0}^{S_{1}} \sum_{k=0}^{S_{2}} \sum_{m=0}^{M-1} \pi^{(i,k,m)}.$$

V. COST OPTIMIZATION

In order to compute the total expected cost per unit time, we introduce the following notations:

 $c_{h_{1}}$: The inventory holding cost per unit item

per unit time for I-commodity.

- c_{h_2} : The inventory holding cost per unit item per unit time for II-commodity.
- c_{s_1} : The setup cost per order for I-commodity.
- c_{s_2} : The setup cost per order for II-commodity.
- c_N : Cost of loss per unit time due to arrival of a negative customer.
- c_w : Waiting time cost of a customer per unit time.
- C_B : Balking cost per customer per unit time.

Then the long-run expected cost rate is given by

$$TC(S_1, S_2, M) = c_{h_1}\eta_1 + c_{h_2}\eta_2 + c_{s_1}\eta_3 + c_{s_2}\eta_4 + c_N\eta_{NC} + c_w\overline{W} + c_B\eta_B.$$

Substituting $\eta's$ and \overline{W} into the above equation, we obtain

$TC(S_1, S_2, M) = c_{h_1}$	$\left(\sum_{i=1}^{S_1} i \left(\sum_{k=0}^{S_2} \sum_{m=0}^M \pi^{(i,k,m)}\right)\right)$	$\left(\right) + c_{h_2}$	$\left(\sum_{k=1}^{S_2} k \left(\sum_{i=0}^{S_1} \sum_{m=0}^{M} \right)\right)$	$\left(\pi^{(i,k,m)}\right)$
-----------------------------	--	----------------------------	---	------------------------------

$$+c_{s_{1}}\left(\left(\gamma_{1}+\gamma_{12}\right)\sum_{i=1}^{S_{1}}\sum_{k=0}^{S_{2}}\sum_{m=1}^{M}\pi^{(i,k,m)}\right)+c_{s_{2}}\left(\left(\gamma_{2}+\gamma_{12}\right)\sum_{i=0}^{S_{1}}\sum_{k=1}^{S_{2}}\sum_{m=1}^{M}\pi^{(i,k,m)}\right)$$

$$+c_{N}\left(\sum_{i=0}^{S_{1}}\sum_{k=0}^{S_{2}}q\lambda\left(\sum_{m=1}^{M}\pi^{(i,k,m)}\right)\right)+c_{w}\left(\frac{\Gamma}{\lambda_{a}}\right)+c_{B}\left(p\lambda\sum_{i=0}^{S_{1}}\sum_{k=0}^{S_{2}}\pi^{(i,k,M)}\right)$$

Due to the complex form of the limiting distribution, it is difficult to discuss the properties of the cost fuction analytically. Hence, a detailed computational study of the cost function is carried out in the next section.

VI NUMERICAL EXAMPLES

Since we have not shown analytically the convexity of the function $TC(S_1, S_2, M)$ we have explored the behavior of this function by considering it as functions of any two variable by fixing the other one at a constant value.

The *table 1* gives the total expected cost rate for various combinations of S_1 and S_2 when fixed values for other parameters and costs are assumed. They are M = 3, $\lambda = 22$, $\gamma_1 = 3$, $\gamma_2 = 5$, $\gamma_{12} = 9$, p = 0.7, q = 0.3, $\mu_1 = 1$, $\mu_2 = 2.1$, $c_{h_1} = 6.7$, $c_{h_2} = 7$, $c_{s_1} = 0.2$, $c_{s_2} = 0.5$, $c_N = 5$, $c_w = 5$, $c_B = 0.5$.

Moreover, Figure 1. refers the changes of $S_{\rm 1}$ and $S_{\rm 2}$ are how to affect the total expected cost rate.

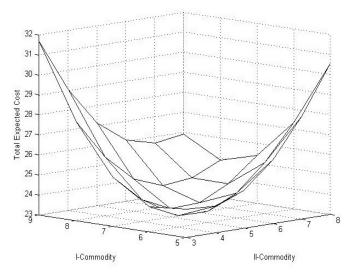


Fig. 1. Convexity of the total cost for various combinations of S_1 and S_2 .

s_2	3	4	5	6	7	8
5	24.3900	<u>24.3208</u>	24.9074	26.1902	28.1159	30.5480
6	24.2305	23.5581	<u>23.5474</u>	24.2324	25.5464	27.3442
7	25.4291	24.0843	<u>23.4229</u>	23.4859	24.1975	25.3994
8	27.9424	25.9299	24.6207	<u>24.0764</u>	24.2217	24.8854
9	31.6487	29.0385	27.1422	26.0501	<u>25.6960</u>	25.8998

Table.1. Total expected cost rate as a function of S_1 and S_2

Let $TC_1(S_1, S_2) = TC(S_1, S_2, 3)$. The values of $TC_1(S_1, S_2)$ are given in the above table. The optimal cost for each S_2 is shown in bold and the optimal cost for each S_1 is underlined. The numerical values shows that $TC_1(S_1, S_2)$ is a convex function in (S_1, S_2) and the (possibly local) optimum occurs at $(S_1, S_2) = (7, 5)$.

constant values for other parameters and costs. Namely, $S_2 = 12$, $\lambda = 11.7$, $\gamma_1 = 3.5$, $\gamma_2 = 2.5$, $\gamma_{12} = 4.5$, p = 0.7, q = 0.3, $\mu_1 = 0.5$, $\mu_2 = 1.05$, $c_{h_1} = 4$, $c_{h_2} = 3$, $c_{s_1} = 1$, $c_{s_2} = 2$, $c_N = 0.2$, $c_w = 15$, $c_B = 15.5$.

The table 2 gives the total expected cost rate for various combinations of $S_{\rm 1}$ and M . We have assumed

S_1	8	9	10	11	12
М					
4	23.52099	21.82993	20.95269	<u>20.94535</u>	21.81381
5	23.13975	21.64211	<u>20.87712</u>	20.90479	21.74334
6	22.92739	21.55864	<u>20.87555</u>	20.94015	21.77652
7	22.77410	21.53674	<u>20.91023</u>	21.00445	21.84678
8	22.82032	21.54629	<u>20.95764</u>	21.07334	21.92291

Table.2. Total expected cost rate as a function of S_1 and M

Let $TC_2(S_1, M) = TC(S_1, 12, M)$. The values of $TC_2(S_1, M)$ are given in the above table. The optimal cost for each S_1 is shown in bold and the optimal cost for each M is underlined. The numerical values shows that $TC_2(S_1, M)$ is a convex function in (M,S_1) and the (possibly local) optimum occurs at $(M, S_1) = (6, 10)$.

The table 3 gives the total expected cost rate for various combinations of $S_{\rm 2}$ and M . We have assumed

			•	and costs.
Namely,	$S_1 = 6$,	$\lambda = 6$,	$\gamma_1 = 3.5$,	$\gamma_2 = 2.5$,
$\gamma_{12} = 4.5$, $p = 0.7$,	q = 0.3	, $\mu_1 = 0.5$,	$\mu_2 = 1.05$,
$c_{h_1} = 4$,	$c_{h_2} = 5$,	$c_{s_1} = 1$,	$c_{s_2} = 1.5$,	$c_N = 0.6$,
$c_w = 15$,	$c_{B} = 16.5$.			

М	3	4	5	6	7
S_2					
2	17.97380	17.43625	<u>17.25528</u>	17.26311	17.36521
3	16.99332	16.66086	<u>16.57168</u>	16.59243	16.65523
4	16.72198	16.52336	<u>16.48977</u>	16.51536	16.55491
5	17.05421	16.91763	<u>16.90427</u>	16.92590	16.95070
6	17.81789	17.70835	<u>17.69908</u>	17.71507	17.73156

Table.3. Total expected cost rate as a function of S_2 and M

Let $TC_3(S_2, M) = TC(6, S_2, M)$. The values of $TC_3(S_2, M)$ are given in the above table. The optimal cost for each M is shown in bold and the optimal cost for each S_2 is underlined. The numerical values shows that $TC_3(S_2, M)$ is a convex function in (S_2, M) and the (possibly local) optimum occurs at $(S_2, M) = (4, 5)$.

In table 4 the effect of service rates γ_1 and γ_2 on the optimal values (S_1, S_2) and the corresponding total expected cost rate are studied by fixing the parameters and costs M = 3, $\lambda = 22$, $\gamma_{12} = 8$, p = 0.7, q = 0.3, $\mu_1 = 1$, $\mu_2 = 2.1$, $c_{h_1} = 6.7$,

$$c_{h_2} = 7$$
, $c_{s_1} = 1.2$, $c_{s_2} = 1.5$, $c_N = 5$, $c_w = 5$,

 $c_{\scriptscriptstyle B}=0.5$. We observed that the total expected cost rate increase when γ_1 and γ_2 increases.

γ_2	2.69	9	3.69		4.6	4.69		9	6.69	
γ_1										
2.49	7 5		7	5	7	5	7	5	7	6
2.49	5.7310		5.7	891	5.9	164	25.9	582	26.0)155
3.49	8 5		7	5	7	5	7	5	7	5
3.49	25.8860		25.9483		25.9	25.9452		038	26.1	124
4.49	8	5	8	5	7	4	7	5	7	5
4.49	25.8	3614	25.9	9641	26.0	933	26.1	189	26.1	309
5.49	8	5	8	5	8	5	7	4	7	4
5.49	25.9715		25.9	9940	26.0)538	26.1	418	26.2	2255
6.49	8 4		8	4	8	5	8	4	7	4
0.49	25.9	017	26.0)111	26.1	216	26.1	513	26.2	2118

Table.4. Effect of service rates γ_1 and γ_2 on optimal values

Table 5 illustrates the impact of service rates γ_1 and γ_{12} on the optimal values (S_1, S_2) and the corresponding total expected cost rate when M = 3, $\lambda = 20$, $\gamma_2 = 4.5$, p = 0.7, q = 0.3, $\mu_1 = 1$,

$$\begin{split} \mu_2 &= 2.1 \,, \quad c_{h_1} = 7 \,, \quad c_{h_2} = 8 \,, \quad c_{s_1} = 2 \,, \quad c_{s_2} = 1.8 \,, \\ c_N &= 5 \,, \ c_w = 5 \,, \ c_B = 0.5 \,. \text{ We observed that the total} \\ \text{expected cost rate increase when } \gamma_1 \text{ and } \gamma_{12} \text{ increases.} \end{split}$$

γ_{12}	4	.5	5	.0	5	.5	6	.0	6	.5				
γ_1														
2.5	6	5	6	5	6	5	6	5	6	4				
2.0	26.2447		26.2	2717	26.2	2962	26.3	3564	26.4	714				
3.0	6	5	6	5	6	5	6	4	6	4				
3.0	26.2	2100	26.2579		26.3	3601	26.3	3747	26.3	912				
3.5	6	5	6	4	6	4	6	4	6	4				
3.0	26.2	2636	26.2	2850	26.2	2896	26.3	3265	26.3	8884				
4.0	6	4	6	4	6	4	6	4	7	5				
4.0	26.1	26.1900		2173	26.2	2733	26.3	3512	26.4	.093				
15	6 4		6	4	6	4	7	5	7	4				
4.5	26.1	592	26.2	2329	26.3	3255	26.4	041	26.4	237				

Table.5. Effect of service rates γ_1 and γ_{12} on optimal values

Table 6 illustrates the impact of service rates γ_2 and γ_{12} on the optimal values (S_1, S_2) and the corresponding total expected cost rate when M = 3, $\lambda = 19$, $\gamma_1 = 1.5$, p = 0.7, q = 0.3, $\mu_1 = 1$, $\mu_2 = 2.1$, $c_{h_1} = 6.7$, $c_{h_2} = 7$, $c_{s_1} = 1.2$, $c_{s_2} = 1.5$, $c_N = 5$, $c_W = 5$, $c_B = 0.5$.

We observed that the total expected cost rate increase when γ_2 and γ_{12} increases.

γ_2	1.5		2.5	2.5		3.5			5.5	
γ_{12}										
2.5	5	4	5	5	4	4	4	4	4	5
2.0	23.8494		24.0	158	24.0	678	24.2	092	24.4	204
3.5	5	4	5	4	5	5	5	5	5	5
3.0	24.0907		24.4758		24.6	172	24.8	916	25.2	715
4.5	5	4	5	4	5	4	5	5	5	5
4.0	24.0	095	24.1	568	24.4	24.4138		772	24.6	397
5.5	6	5	6	5	6	5	5	4	5	5
5.5	23.9139		23.9	874	24.1	867	24.4	688	24.5	837
6.5	6 4		6	5	6	5	6	5	6	5
0.0	24.9	960	25.4	432	25.7	337	26.0	965	26.4	013

Table.6. Effect of service rates γ_{12} and γ_2 on optimal values

Table 7 illustrates the impact of replenishments rates μ_1 and μ_2 on the optimal values (S_1, S_2) and the corresponding total expected cost rate when M = 3, $\lambda = 19$, $\gamma_1 = 3.5$, $\gamma_2 = 2.5$, $\gamma_{12} = 3.5$

, p = 0.7, q = 0.3, $c_{h_1} = 6.7$, $c_{h_2} = 7$, $c_{s_1} = 1.2$, $c_{s_2} = 1.5$, $c_N = 5$, $c_w = 5$, $c_B = 0.5$. We observed that the total expected cost rate decrease when μ_1 and μ_2 increases.

μ_2	1.7		1.8		1.9		2.0		2.1	
μ_1										
0.6	9	7	9	6	9	6	9	6	9	6
0.0	27.6	27.6291		314	27.4	658	27.3	444	27.2	590
0.7	8 6		8	6	8	6	8	6	8	6
0.7	26.8	882	26.7	375	26.6	289	26.5	547	26.5	083
0.8	7	6	7	6	7	6	7	6	7	6
0.8	26.1	883	26.1	155	26.0	735	26.0	563	26.0	587
0.9	7	6	7	6	7	6	7	6	7	6
0.9	25.8493		25.7	25.7166		196	25.5	519	25.5	079
1.0	6 6		6	6	6	6	6	5	6	5
1.0	25.4	296	25.3	894	25.3	737	25.3	516	25.2	388

Table.7. Effect of service rates μ_1 and μ_2 on optimal values

In table 8 the impact of holding costs c_{s_1} and c_{s_2} on the optimal values (S_1, S_2) and the corresponding total expected cost rate are studied by fixing the parameters and costs M = 3, $\lambda = 22$,

 $\gamma_1 = 1.5$, $\gamma_2 = 2.5$, $\gamma_{12} = 8$, p = 0.7, q = 0.3, $\mu_1 = 1$, $\mu_2 = 2.1$, $c_{h_1} = 6.7$, $c_{h_2} = 7$, $c_N = 5$, $c_w = 5$, $c_B = 0.5$. We observed that the total expected cost rate increase when c_{s_1} and c_{s_2} increases.

	C_{s_1}	1.2		1.3		1.4		1.5		1.6	
C_{s_2}											
0.7		7	5	7	5	7	5	7	5	7	5
0.7		25.0526		25.2	241	25.3	957	25.5	672	25.7	388
0.0		7	5	7	5	7	5	7	5	7	5
0.8		25.0652		25.2368		25.4	083	25.5	799	25.7514	
0.9		7	5	7	5	7	5	7	5	7	5
0.9		25.0	779	25.2	494	25.4210		25.5925		25.7	641
1.0		7 5		7	5	7	5	7	5	7	5
1.0		25.0	905	25.2	621	25.4	336	25.6	052	25.7	767
		7	7 5		5	7	5	7	5	7	5
1.1		25.1	032	25.2	747	25.4	463	25.6	178	25.7	894

Table.8. Effect of setup costs c_{s_1} and c_{s_2} on optimal values

In table 9 the impact of holding costs c_{h_1} and c_{h_2} on the optimal values (S_1, S_2) and the corresponding total expected cost rate are studied by fixing the parameters and costs M = 3, $\lambda = 22$,

 $\gamma_1 = 1.5$, $\gamma_2 = 2.5$, $\gamma_{12} = 8$, p = 0.7, q = 0.3, $\mu_1 = 1$, $\mu_2 = 2.1$, $c_{s_1} = 1.2$, $c_{s_2} = 1.5$, $c_N = 5$, $c_w = 5$, $c_B = 0.5$. We observed that the total expected cost rate increase when c_{h_1} and c_{h_2} increases.

C_{h_2}	4		5		6		7		8	
C_{h_l}										
2.5	9	7	9	7	9	7	9	7	9	7
3.5 16.5		145	16.7	850	17.0	556	17.3	261	17.5	967
4.5	8	6	8	6	8	6	8	6	8	6
4.5	19.3092		19.6377		19.9	662	20.2	946	20.6	231
5.5	8	7	8	6	8	6	8	6	8	6
5.5	21.8339		22.2329		22.5614		22.8	898	23.2	183
6.5	7	6	7	5	7	5	7	5	7	5
0.5	23.8	701	24.3	651	24.8	469	25.2	070	25.5	670
7.5	7	6	7	6	7	6	7	5	7	5
7.5	25.8	514	26.3	464	26.8	414	27.3	245	27.6	846

Table.9. Effect of holding costs c_{h_1} and c_{h_2} on optimal values

VII. CONCLUSION

In this paper, we discussed (S-1,S) policy for two-commodity stochastic inventory system under continuous review at a service facility with finite waiting hall. The customers arriving to the service station are classifed as ordinary (positive or regular) and negative customers. Demands occuring during stock out periods are lost. The limiting distribution is obtained by using the algorithm of Gaver (1984). Various system performance measures are derived in the steady state. The results are illustrated with numerically. The model discussed here is useful in studying a service facility for two commodity inventory system which are slow moving items and the high holding cost.

REFERENCES RÉFÉRENCES REFERENCIAS

- Arivarignan, G., Elango, C. and Arumugam, N., (2002). A continuous review perishable inventory control system at service facilities. *Advances in Stochastic Modelling*, Artalejo, J. R. and Krishnamoorthy, A. (eds.), Notable Publications, NJ, USA, pp.9-40
- Arivarignan, G. and Sivakumar, B., (2003). Inventory system with renewal demands at service facilities. *Stochastic Point Processes,* Srinivasan, S.K. and Vijayakumar, A. (eds.), Narosa Publishing House, New Delhi, pp. 108-123.
- Berman, O., Kaplan, E. H. and Shimshak, D. G., (1993). Deterministic approximations for inventory management at service facilities. *IIE Transactions*, 25: pp.98-104.
- Berman, O. and Kim, E., (1999). Stochastic inventory policies for inventory management of service facilities. *Stochastic Models*, 15: pp.695-718.

- 5. Berman, O. and Sapna, K. P., (2000). Inventory management at service facilities for systems with arbitrarily distributed service times. *Stochastic Models*, 16: pp.343-360.
- 6. Elango, C., (2001). A continuous review perishable inventory system at service facilities. *Ph. D. thesis, Madurai Kamaraj University, Madurai,*
- Elango, C. and Arivarignan, G., (2003). A continuous review perishable inventory system with Poisson demand and partial backlogging. *Statistical Methods and Practice: Recent Advances.* Balakrishnan, N., Kannan, N. and Srinivasan, M. R.(eds.), Narosa Publishing House, New Delhi.
- 8. Gaver, D.P., Jacobs, P.A. and Latouche, G., (1984). Finite birth-and-death models in randomly changing environments. *Advances in Applied Probability* 16:715 - 731.
- He, Q.M., Jewkes, E. M. and Buzacott, J., (1998). An efficient algorithm for computing the optimal replenishment policy for an inventory-production system. In *Advances in Matrix Analytic Methods for Stochastic Models,* Alfa, A. and Chakravarthy, S. (eds.), Notable Publications, NJ, USA, pp. 381-402.
- Kalpakam, S. and Arivarignan, G., (1990). Inventory system with random supply quantity. *OR Spectrum*, 12: pp.139-145.
- 11. Kalpakam, S. and Arivarignan, G. (1998). The (S-1, S) inventory system with lost sales. *Proc. of the Int. Conf. on Math. Mod. Sci. and Tech.* 2:205-212.
- 12. Kalpakam, S. and Sapna, K.P. (1995). (S-1, S) perishable system with stochastic lead times. *Mathl. Comput. Modelling* 21(6):95-104.

- 13. Kalpakam, S. and Sapna, K.P. (1996). An (S-1, S) perishable inventory system with renewal demands. *Naval Research Logistics* 43:129-142.
- 14. Kalpakam, S. and Shanthi, S. (2000). A perishable system with modified base stock policy and random supply quantity. *Computers and Mathematics with Applications* 39:79-89.
- Krishnamoorthi, A., Iqbal Basha, R. and Lakshmi, B., (1994). Analysis of two commodity problem. *International Journal of Information and Management Science* 5(1):127-136.
- 16. Krishnamoorthi, A. and Varghese, T.V., (1994). A two-commodity inventory problem. *International of Information and Management Science* 3:55-70.
- Liu, L. and Yang, T., (1999). An (s, S) random lifetime inventory model with a positive lead time. *European Journal of Operational Research*, 113: pp.52-63.
- 18. Nahmias, S., (1982). Perishable inventory theory: a review. *Operations Research*, 30: pp.680-708.
- Pal, M., (1989). The (S-1, S) inventory model for deteriorating items with exponential leadtime. *Calcutta Statistical Association Bulletin* 38: pp.149-150.
- Raafat, F., (1991). A survey of literature on continuously deteriorating inventory models. *Journal of Operational Research Society*, 42: pp.27-37.
- Sivakimar, B., Anbazhagan, N. and Arivarignan, G., (2005). A two-commodity perishable inventory system. *ORiON* 21 (2):157 - 172.
- 22. Schmidt, C.P. and Nahmias, S., (1985). (S-1,S) Policies for perishable inventory. *Management Science* 31:719-728.
- 23. Søren Glud Johansen, (2005). Base-stock policies for the lost sales inventory system with Poisson demand and Erlangian lead times. *Int. J. of Production Economics* 93-94, 429-437.
- 24. Yadavalli, V.S.S., Anbazhagan, N. and Arivarignan, G., (2004). A two-commodity continuous review inventory system with lost sales. *Stochastic Analysis and Applications* 22:479-497.
- Yadavalli, V. S. S., Arivarignan, G. and Anbazhagan, N., (2006). Two Commodity Coordinated Inventory System With Markovian Demand. *Asia-Pacific Journal of Operational Research* 23(4): 497-508.

This page is intentionally left blank